Integration of machine learning insights into organizational learning: A case of B2B sales forecasting
نویسندگان
چکیده
Business to Business (B2B) sales forecast can be described as a decision-making process, which is based on past data (internal and external), formalized rules, subjective judgment, and tacit organizational knowledge. Its consequences are measured in profit and loss. The research focus of this paper is aimed to narrow the gap between planned and realized performance, introducing a novel model based on machine learning techniques. Preliminary results of machine learning model performance are presented, with focus on distilled visualizations that create powerful, yet human comprehensible and actionable insights, enabling positive climate for reflection and contributing to continuous organizational learning.
منابع مشابه
Impact Organizational Learning is about CRM Performance Regarding the Relationship Between Integration of Marketing
Purpose: What is changing today is expanding customer loyalty. In organizations such as the Melli Bank, customer relationship management is more sensitive. Because the customer is considered to be part of the service provided in the service delivery process, and the customers are the lifeblood of the banks. The Melli Bank can not only seek new customers, but also keep customers and convert them...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کامل